Использование тепловой энергии океана

Категории статей

Биоразлагаемые пакеты – вред или польза?

Интересно разобраться, действительно ли такие пакеты не наносят вреда окружающей природе. Далее

Видео лекции на канале Temperatures.ru

Две видео лекции уже доступны для просмотра на канале Temperatures.ru Далее

Теплэко – тепло из ниоткуда?

К рекламе на телевидении нужно относиться очень критически, особенно когда её представляют умные люди. Далее

Менталитет против Закона

И одна из наших особенностей – у нас принято нарушать, причем безнаказанно, принятые законы и постановления. Далее

Сколько кислорода в воздухе зимой?

Есть такая народная поговорка: «Лето для души, зима для здоровья». Суть утверждения в целебности зимнего морозного воздуха. Эта поговорка, разумеется, только для тех, кто зимой не сидит в помещении, а активно двигается на воздухе. Почему зимний воздух считается полезным? Правда ли, что в нем больше кислорода? Далее

Популярные статьи

Польза и вред инфракрасного обогревателя (321418)

Среди электрических обогревателей, которые мы используем в быту, наиболее популярными сейчас становятся инфракрасные нагреватели. Они очень широко рекламируются в Интернете и в газетах. Говорят, что они намного эффективнее масляных радиаторов и тепловентиляторов. Меньше потребляют энергии, не сжигают кислород и т.д. Главное – они совершенно не вредные, никакого отрицательного воздействия на организм человека не оказывают. Далее

Читайте также:  Океан не питай той день

Почему горячая вода замерзает быстрее, чем холодная? (206968)

Это действительно так, хотя звучит невероятно, т.к в процессе замерзания предварительно нагретая вода должна пройти температуру холодной воды. Парадокс известен в мире, как «Эффект Мпембы». Далее

Вредно ли разогревать пищу в микроволновке? (198235)

Одна моя знакомая отказывается есть пищу, которую кто-то разогрел в микроволновой печи. Всему виной — страшилки в Интернете. Далее

Контролируйте температуру приготовления мяса! (179781)

При приготовлении сырого мяса, особенно, домашней птицы, рыбы и яиц необходимо помнить, что только нагревание до надлежащей температуры убивают вредные бактерии. Далее

451 градус по Фаренгейту, температура возгорания бумаги? (156976)

451 градус по Фаренгейту. Это название знаменитой книги Рэя Брэдбери. На языке оригинала звучит так: ‘Fahrenheit 451: The Temperature at which Book Paper Catches Fire, and Burns’. Действительно ли при этой температуре начинают гореть книги? Далее

Основные разделы

Тепло океанских вод как источник энергии

Две трети Земли (361 млн. км 2 ) покрыто водой. Запасы энергии, сосредоточенной в Мировом океане колоссальны. Известно, что плотность тепловой энергии океанов тропических широт – 300 000 Вт/м². Могут ли люди использовать тепловую энергию, обусловленную перегревом поверхностных вод океана по сравнению с более глубокими его водами, как возобновляемый источник?

На настоящий момент создано несколько станций, преобразующих тепловую энергию океана в электрическую энергию. Эти установки получили название ОТЕС (Ocean Thermal Energy Conversion). ОТЕС в основном можно располагать в экваториальных широтах с максимальным прогревом воды.

Еще в августе 1979 вблизи Гавайских островов начала работать теплоэнергетическая установка мини-ОТЕС. В близи островов тропические воды встречаются с арктическим потоком, разница температур на поверхности и на глубине 450-600 м достигает 22°С.

Установка мини-ОТЕС была смонтирована на барже. Под ее днищем помещен длинный трубопровод для забора холодной воды. Трубопроводом служит полиэтиленовая труба длиной 700 м с внутренним диаметром 50 см. В установке мини-ОТЕС теплые, поверхностные воды океана, прокачиваются насосом через теплообменник испарителя и превращают в газ рабочее тело с низкой температурой кипения (аммиак, фреон, пропан). Создается пар повышенного давления, который расширяется через турбину в холодильник, где конденсируется во втором теплообменнике, омываемом водой, закачиваемой из глубинных слоев океана. Установки такого принципа работы называются установками закрытого цикла. Именно на Гаваях впервые в истории техники установка ОТЕС смогла отдать во внешнюю нагрузку полезную мощность, одновременно покрыв и собственные нужды. Опыт, полученный при эксплуатации мини-ОТЕС, позволил быстро построить мощную теплоэнергетическую установку ОТЕС-1 и приступить к проектированию еще более мощных систем подобного типа. Станции ОТЕС могут располагаться на материке или около него, на шельфе и в открытом океане (море)

Существуют также установки открытого цикла. В таких установках в качестве рабочего тела использована морская вода, подаваемая в испаритель через деаэратор. Наличие деаэратора диктуется необходимостью освобождения морской воды от растворенных в ней газов. Предварительно по объемам испарителя и конденсатора удаляется воздух, так что давление над поверхностью жидкости определяется только давлением насыщенных паров, которое сильно зависит от температуры. При характерных для ОТЕС температурах этот перепад составляет примерно 1,6 кПа (при замкнутом цикле на аммиаке около 500 кПа), под действием этого перепада пары воды приводят в движение турбину. Турбина, в свою очередь, проводит в действие электрогенератор. Проходя через турбину пары воды попадают в конденсатор, где вновь превращаются в жидкость.

Основное отличие открытого цикла заключается в незначительном перепада давлений, что требует использования соответствующих гигантских турбин диаметром в несколько десятков метров. Это, пожалуй, основной технический недостаток систем открытого цикла. Основное их преимущество — отсутствие гигантских теплообменников. Кроме того, при работе систем открытого цикла, за счет испарения морской воды могут быть получены большие количества пресной воды, что важно в жарком поясе планеты.

Системы ОТЕС могут работать не только в жарком климате. Проектируются станции, работающие в Арктическом климате, которые используют для выработки электроэнергии перепад температур между холодным воздухом и незамерзающей соленой водой подо льдом. Действительно, в Северном Ледовитом океане температура в поверхностном слое подо льдом близка к 0°С. Таким образом, разность температур подледной воды и воздуха составляет в арктических районах более 26°С и может быть использована для генерации электричества. Расчеты ученых показывают, что при таком перепаде каждый 1 м³ морской воды, будучи пропущен за 1 с через преобразователь, позволяет получить около 10 кВт мощности при КПД установки 5%. Эти устройства похожи на обычные тепловые станции с градирнями для охлаждения воды. Для эффективной работы такой станции, в охлаждающем контуре, необходимо использовать жидкость с низкой температурой замерзания. В качестве промежуточного теплоносителя здесь применяется водный раствор хлористого кальция с концентрацией не менее 26 кг на 100 кг воды, который достаточно широко используется в холодильной технике. Рабочим телом в основном контуре станции служит фреон-12, пары которого приводят в движение турбину с электрогенератором.

Простейшие системы использования тепловой энергии океана уже нашли реальное воплощение. В районе Нью-Йорка построена электростанция мощностью 7180 киловатт, что использует тепло океанской воды. Отработанный пар, не сбрасывается в море, а конденсируется с образованием пресной воды. Таким образом, кроме электроэнергии станция еще производит 22680 тонн пресной воды в сутки.

В апреле 2015 состоялся пуск новой тепловой станции, построенной компанией Makai Ocean Engeneering на Гавайских островах. Планируется выход на 105 КВт мощности, что хватит для освещения 120 домов. В будущем планируется выйти на мощности порядка 10 МВт для одной станции, что обеспечит электроэнергией 120 000 домов. По расчетам, 12 таких станций полностью обеспечат Гаваи электроэнергией.

У побережья тропического острова Хайнань в ближайшем будущем начнется возведение крупнейшей электростанции мощностью 10 МВт, которая будет использовать тепловую энергию океана.

Сегодня освоение тепловой энергии океана входит в национальные программы США, Франции, Японии, Швеции, Индии. Остров Реюньон был объявлен президентом Франции национальной лабораторией для создания океанической тепловой электростанции. В перспективе, к 2030 г. построенные здесь ОТЭС должны полностью обеспечить потребности в электроэнергии всего острова.

Источник

ИСПОЛЬЗОВАНИЕ ТЕПЛОВОЙ ЭНЕРГИИ ОКЕАНА

Мировой океан является громадным естественным аккумулятором солнечной энергии. В среднем за один день 60 млн км 2 тропических морей и океанов поглощают количество солнечного излучения, эквивалентное энергии, которую можно получить из 40*10 9 м 3 нефти. Если хотя бы одна десятая доля от 1 % этой солнечной энергии могла быть преобразована в электрическую энергию, то это дало бы количество электричества, в 20 раз превышающее потребление США в течение одних суток.

Впервые использовать теплоту морей и океанов для получения электричества предложил в 1881 г. французский физик Жак Арсан де Арсонвал.

В 1974 г. в Кеахол Поинте, на побережье Кона на Гавайях была построена природная лаборатория энергии NELHA, ставшая в дальнейшем передовым мировым центром для развития технологий использования тепловой энергии океана.

1981 г. Япония создала береговую станцию закрытого типа на 100 кВт в Республике Науру в Тихом океане. Труба для холодной воды была проложена по морскому дну на глубине 580 м, рабочей жидкостью служил фреон, теплообменник был сделан из титана.

В 1992 – 1988 гг. в Кеахол Поинте действовала ОТЭС открытого типа на 210 кВт. При проектировании станции были использованы последние достижения техники. Турбогенератор был рассчитан на мощность в 210 кВт при использовании теплой поверхности воды в 26 о С и глубоководной с температурой до 6 о С. Небольшой объем (10 %) отработанного пара использовался для опреснения воды. Наилучшие показатели производства энергии достигали 255 кВт (общей) при 103 кВт чистой энергии, при этом производилось до шести галлонов пресной воды в минуту. Эти показатели до сих пор остаются рекордами для морской тепловой энергетики.

В настоящее время продолжаются исследования систем как открытого, так и закрытого типа. Ученые во всем мире развивают новые, более рентабельные, современные технологии.

Основными лидерами на мировом рынке ОТЭС сегодня признаны Гавайи и Япония, где эксперименты проводятся в наибольших масштабах.

Наиболее целесообразно располагать ОТЭС на участках со стабильным природными условиями, обеспечивающими различие на 20 о С температур теплой поверхности воды и холодной, находящейся на глубине не более 1 км.

В мире естественная океанская разница температур, необходимая для нормальной работы ОТЭС, находится примерно между 20 о северной и 20 о южной широты. В пределах этой тропической зоны расположены границы двух индустриальных держав–США и Австралии, а также территории 66 развивающихся стран.

Тропические острова с нарастающими потребностями в энергии и увеличивающейся зависимостью от дорогой импортной нефти являются наиболее вероятными областями для развития океанской тепловой энергетики.

Большой потенциал океанской тепловой энергии целесообразно использовать для получения энергоемких веществ: водорода, аммиака и этанола. При этом достигается максимальный экономический и экологический эффект.

Промышленное освоение ОТЭС открытого типа, вероятно, начнется с Тихоокеанских островов. Это связано с высокой стоимостью привозимой нефти, нехваткой пресной воды и внедряемыми социальными программами, направленными на развитие чистых энергетических технологий.

В современных условиях использование энергии ОТЭС может быть оправдано только при комплексном применении всех выгод данной технологии: одновременном получении энергии и пресной воды, использовании холодной воды глубинных слоев для кондиционирования воздуха, в сельском хозяйстве и при разведении рыбы. Данное направление альтернативной энергетики еще требует активной проработки, направленной на удешевление конструкций, повышение надежности станций и удобство в обслуживании.

Однако стремительное удорожание традиционных видов топлива ведет к ускоренному освоению альтернативных источников энергии. Поэтому даже технологии возобновляемой энергетики, кажущиеся в настоящее время далекими от реального рынка и «наполовину фантастическими», к которым можно отнести ОТЭС, в недалеком будущем могут стать экономически выгодными. И тут выигрыш будет за теми, кто успел первыми занять соответствующие ниши.

Физические основы работы океанских тепловых электростанций (ОТЭС)

Во многих областях нашей планеты разницы температур верхних нагретых и глубинных холодных слоев воды составляет порядка 20 о С, что дает возможность для создания достаточно эффективной океанской тепловой электростанции.

Для преобразования теплоты океана в электричество используют системы различных типов:

Рис. 9.20. Технологическая схема работы океанической электростанции: 1 – генератор;

2– турбина; 3 — теплообменник; 4 — насос; 5 — конденсатор

В системе закрытого цикла теплая вода верхних слоев океана спользуется

для испарения рабочей жидкости (фреон, пропан, аммиак), проходящей через теплообменник, точка кипения которой при атмосферном давлении не превышает 30 о С. Пар расширяется и вращает турбину, соединенную с генератором, производящим электричество. Отработанный пар после выхода из турбины охлаждается холодной водой, поступающей из глубинных слоев, конденсируется и вновь используется в цикле. Рабочая жидкость остается закрытой в системе и циркулирует непрерывно.

На рис. 9.20 показана работа так называемой закрытой системы. Насос обеспечивает циркуляцию аммиака, имеющего очень низкую температуру кипения, в замкнутом контуре.

Теплая океаническая вода нагревает аммиак (верхняя часть схемы), который переходит в газообразное состояние и в этом виде поступает на турбину, где он расширяется и приводит в действие генератор. С турбины аммиак выходит с пониженной температурой и при меньшем давлении и пропускается через теплообменник, использующий холодную воду; газ сжижается, и цикл повторяется. В открытой системе в качестве рабочего тела используется морская вода; ее температура кипения снижается в вакуумной камере, где поддерживается давление на уровне 3,5 % от атмосферного.

Рассмотрим идеальную ОТЭС закрытого типа, в которой тепловое

сопротивление в испарителе и конденсаторе равно нулю, и КПД

паросиловой установки равен КПД цикла Карно. Небольшая разность этих температур приводит к большим значениям расхода воды, размеров и стоимости теплообменников и мощности насосов, соизмеримой с мощностью ОТЭС. Так, например, при Р=1 МВт расход воды может достигать 650 т/ч.

В системе открытого цикла рабочей жидкостью становится сама теплая

морская вода, испаряемая в вакуумной камере для получения пара при абсолютном давлении около 2,4 кПа. Расширившийся пар вращает турбину низкого давления, которая соединена с генератором, производящим электричество. При выходе из турбины пар конденсируется под воздействием холодной воды из глубоких слоев океана. Полученная жидкость, потеряв при испарении соли, опресняется.

Если в системе применяется закрытый конденсатор, в котором сконденсированный пар не контактирует с холодной морской водой, полученную пресную воду можно использовать для питья, орошения или выращивания пресноводной рыбы.

При прямом контакте воды и паров в конденсаторе производительность электроэнергии выше. Однако в данном случае конденсат перемешивается с холодной морской водой и полученная на выходе жидкость становится соленой. Эта смесь возвращается обратно в океан.

В системе смешанного типа сочетаются особенности систем как открытого, так и закрытого типа для оптимизации получения электричества и пресной воды. В этом случае теплая морская вода поступает в вакуумную камеру, где преобразуется в пар (подобно открытому циклу), который, в свою очередь, используется для выпаривания рабочей жидкости (фреон, пропан, аммиак) на участке закрытого цикла системы. Испаренная рабочая жидкость вращает турбину, соединенную с электрическим генератором, а пар, сконденсированный вне теплообменника, обеспечивает поступление пресной воды.

Широкомасштабному промышленному развитию океанской тепловой энергетики способствует ряд преимуществ:

· ОТЭС используют чистый, неограниченный, возобновляемый природный ресурс. Теплота поверхности морей и холодная вода глубоководья заменяют традиционные ископаемые виды топлива, используемые для производства электричества;

· ОТЭС не воздействуют негативно на окружающую среду. Используемая в процессе работы станции вода возвращается в океан без каких-либо негативных последствий;

· ОТЭС способны наряду с электроэнергией производить пресную воду, что особенно важно для населения, живущего на островах, где ресурсы пресной воды ограничены;

· солнечной энергии, поступающей в верхние слои океана, более чем достаточно для обеспечения человечества чистой энергией в будущем;

· использование океанской энергии увеличивает независимость от импортируемых традиционных видов топлива, повышая тем самым энергетическую безопасность;

· холодная вода ОТЭС может использоваться для охлаждения и кондиционирования зданий, в сельском хозяйстве, для выращивания рыбы, моллюсков и водорослей.

· ОТЭС могут быть использованы для энергоемких производств водорода, метанола и аммиака.

Однако существуют и отрицательные факторы, которые необходимо учитывать и преодолевать, а именно:

· стоимость электроэнергии, производимой ОТЭС, выше традиционной;

· для нормальной работы ОТЭС необходимо наличие ряда природных условий: разность температур между теплым поверхностным и холодным глубоководным слоями воды должна составлять около 20 о С, причем экономический эффект достигается, когда расстояние от поверхности до глубины с необходимой низкой температурой не превышает 1 км;

· конструкции океанских станций и проложенные под водой трубы могут повреждаться из-за плохих погодных условий, прибоев, рифов. Для борьбы со штормами можно придать платформе нейтральную плавучесть и заякорить в подводном положении (рис. 9.21.);

· отсутствуют достаточно эффективные и экономически приемлемые средства борьбы с коррозией и биологическим обрастанием оборудования и трубопроводов;

· если в контуре, по которому циркулирует рабочая жидкость, возникает утечка, то она может нанести вред морской флоре и фауне.

Океанские тепловые электростанции по месту их расположения подразделяются на следующие типы:

· наземные или прибрежные (строятся на берегу или в прибрежной зоне);

· шельфовые (на платформах, базирующихся около шельфа);

· глубоководные (в пришвартованных или свободно плавающих на глубоководье средствах).

Рис. 9.21. Подводная платформа для ОТЭС: 1 – платформа; 2 – трубопровод;

3 – распорка; 4 – бридель; 5 – шарнир; 6 – трапеция; 7 – якорный трос; 8 – якорь

Наземные или прибрежные ОТЭС имеют ряд преимуществ перед глубоководными. Станции, построенные на земле или в прибрежной зоне, не требуют сложной швартовки, длинных силовых кабелей, а также просты в обслуживании (по сравнению с работой в открытом море). Они могут быть построены на защищенных от штормов участках, а электричество и пресную воду можно передавать через акведуки и эстакады. Прибрежное или наземное месторасположение минимизирует затраты на трубы, которые в данном случае намного короче. Свободный подход при строительстве также способствует снижению стоимости электричества, вырабатываемого такими ОТЭС.

Однако у них есть и ряд недостатков. Сильное волновое воздействие (особенно в шторм) в зоне прибоя может негативно влиять на конструкции, если трубы не погружены в защитные траншеи или не были предусмотрены волнорезы, смягчающие силовую нагрузку от волн. Также требуются дополнительные затраты на преодоление зачастую нескольких сотен метров от берега до необходимой глубины с соответствующей температурой холодной воды.

Шельфовые ОТЭС устанавливают на расстоянии до 100 м за бурной зоной прибоя для более близкого доступа к холодным слоям воды. Они могут строиться в верфях, затем их буксируют к предусмотренному участку и фиксируют якорем. Однако трудности в обслуживании таких ОТЭС на глубоководье, а также дополнительные затраты при передаче энергии и пресной воды снижают их конкурентоспособность, делая более затратными, чем наземные.

Глубоководные ОТЭС могут быть использованы для работы на большом расстоянии от берега. Однако у этих станций возникает ряд трудностей, связанных со строительством и обслуживанием, особенностями швартовки, проблемами передачи энергии, а также сложным обслуживанием в открытом океане. Так, швартовка ограничена глубинами порядка 2 км, но даже и на более мелких глубинах ее стоимость может воспрепятствовать коммерческому использованию станции.

Кабели, проложенные к платформам, более восприимчивы к повреждениям, особенно во время шторма. На глубинах более 1 км их трудно поддерживать в рабочем состоянии и восстанавливать.

Источник

Оцените статью