С помощью чего современные ученые исследуют мировой океан

Современные способы изучения океанов и морей

Океаны

Гидросфера — водная оболочка Земли. Мировой океан-главная часть гидросферы Земли. Термин «Мировой океан» ввёл в науку учёный-географ Ю.М. Шокальский. Мировой океан занимает 71% поверхности Земли. Он делится материками на 4 океана: Тихий океан (50% площади — 178,62 млн. км2), Атлантический (25% -91,56 млн. км2), Индийский (21% — 76,17 млн. км2) и Северный Ледовитый океан (4% — 14,75 млн. км2).

Состав и свойства воды

Вода в океане солёная. Это знают все. Солёный вкус придают содержащиеся в ней 3,5% растворённых минеральных веществ — в оснавном соединений натрия и хлора – основные ингредиенты столовой соли. Из неметаллических компонентов важны кальций и кремний, так как они участвуют в строении скелетов и раковин многих морских животных. Плотность морской воды равна примерно 1030 кг/м3 при температуре = 20 градусов. Плотность воды в океане меняется с глубиной из-за давления вышележащих слоёв, а также в зависимости от температуры и солёности.

Наиболее плотные массы воды в океане могут оставаться на глубине и сохранять пониженную температуру более 1000 лет. Преобладающий синий цвет морской воды связан с рассеянием солнечных лучей в воде мелкими частицами. Зарегистрировано проникновение солнечных лучей до глубины 700 метров. Радиоволны проникают в толщу воды лишь на небольшую глубину, зато звуковые волны могут распространяться под водой на тысячи километров. Высокое содержание солей препятствует её использованию для поливания сельскохозяйственных культур. Для питья морская вода также не пригодна.

Обитатели океана

Жизнь в океане необычайно разнообразна — там обитает более 200000 видов живых организмов. Большая часть морских организмов обитает на мелководье, куда лучше проникает солнечный свет. Широко известно такое явление как «апвеллинг» — поднятие к поверхности глубинных морских вод, обогащенных питательными веществам; с этим связано богатство и разнообразие органической жизни у некоторых побережий. Жизнь в океане представлена различными организмами — от микроскопических одноклеточных водорослей до китов, превышающих в длину 30 метров. Океаническая биота делится на следующие основные группы. Планктон представляет собой массу микроскопических растений и животных, которые образуют плавучие «кормовые угодья». Планктон состоит из фитопланктона и зоопланктона. Также существует нектон- это свободно плавающие в толще воды организмы, преимущественно хищники, включает более 20000 разновидностей рыб, а также кальмаров, тюленей и китов. Бентос включает в себя растения и животных, обитающих на дне на дне океана или вблизи дна, как на больших глубинах, так и на мелководье.

Читайте также:  Океанами стали все исполнители

Растения, представленные различными водорослями (например, бурыми), встречаются также на мелководье, куда проникает солнечный свет.

Цунами

Катастрофические волны могут возникать в результате резкого изменения глубины дна (цунами), при сильных штормах и ураганах (штормовые волны) или при обвалах и оползнях береговых обрывов. Цунами могут распространяться в открытом океане со скоростью 700-800 км/ч. При приближении к берегу, волна цунами тормозится, одновременно увеличивается её высота. В результате на берег накатывается огромная волна высотой до 30 метров. Цунами обладает огромной разрушительной силой. Больше всего страдают районы, находящиеся вблизи таких сейсмически активных зон, как Аляска, Япония, Чили. Волны, приходящие от удалённых источников приносят более значительный вред. Подобные волны образуются при взрывных извержениях вулканов, как, например, при извержении вулкана на острове Кракатау в Индонезии в 1883 году. Ещё более разрушительными могут быть штормовые волны, порождённые ураганами (тропическими циклонами). Неоднократно подобные волны обрушивались на побережье Бенгальского залива; одна из них в 1737 году привела к гибели примерно 300000 человек. Сейчас имеется возможность заранее оповещать население прибрежных городов о приближающихся ураганах.

Катастрофические волны, вызванные оползнями и обвалами, относительно редки. Они возникают в результате падения крупных каменных глыб в глубоководные заливы; при этом происходит вытеснение огромной массы воды, коротая, обрушивается на берег. В 1736 году на остров Кюсю в Японии сошёл оползень, имевший трагические последствия: порождённые им три огромные волны унесли жизни около 15000 человек.

Ресурсы океана

Пищевые ресурсы океана

В океанах ежегодно вылавливается десятки миллионов тонн рыбы, моллюсков и ракообразных. В некоторых частях океанов добыча с применением современных плавучих рыбозаводов ведётся очень интенсивно. Почти истреблены некоторые виды китов. Продолжающийся интенсивный вылов может нанести сильный ущерб таким ценным промысловым видам рыбы, как тунец, сельдь, треска, морской окунь и мерлуза.

Минеральные ресурсы океана

Все минералы, которые находят на суше, присутствуют и в морской воде. Наиболее распространены там соли, магний, сера, кальций, калий, бром. Недавно океанологи обнаружили, что во многих местах дно океана буквально покрыто россыпью железомарганцевых концентраций с высоким содержанием марганца, никеля и кобальта. Найденные на мелководье фосфоритные конкреции могут использоваться в качестве сырья для производства удобрений. В морской воде присутствуют также такие ценные металлы, как титан, серебро, золото. В настоящее время в значительных количествах из морской воды добывается лишь соль, магний и бром.

Нефть

На шлейфе уже сейчас разрабатывается ряд крупных месторождений нефти, например у берегов Техаса и Луизианы, в Северном море, Персидском заливе и у берегов Китая. Ведётся разведка месторождений у берегов Западной Африки, у восточного побережья США и Мексики, у берегов арктической Канады и Аляски, Венесуэлы и Бразилии.

Энергии приливов

Уже давно было известно, что приливные течения, проходящие через узкие проливы, можно использовать для получения энергии в такой же степени, как водопады и плотины на реках. Так, например в Сен-Мало во Франции с 1966 года успешно действует приливная гидроэлектростанция.

Другие ресурсы

Почти три четверти солнечной энергии, поступающей на Землю, приходится на океаны, поэтому океан является идеальным накопителем тепла. К другим ресурсам океана можно отнести жемчуг, который образуется в теле некоторых моллюсков; водоросли, которые используются в качестве удобрений, пищевых добавок и пищевых продуктов, а также в медицине как источник йода, натрия и калия; залежи гуано- залежи птичьего помёта, добываемого на некоторых атоллах в Тихом океане и используемого в качестве удобрений.

Ресурсы морей России

Территорию нашей России омывает 13 морей: 12 морей Мирового океана и Каспийское море. Эти моря очень разнообразны по ресурсам.

Моря России имеют важное хозяйственное значение. Прежде всего, это дешевые транспортные пути, соединяющие нашу страну, как с другими государствами, так и с отдельными её районами. Через моря Северного Ледовитого океана проходит Северный морской путь – важная транспортная магистраль России. Это самый короткий путь от Санкт — Петербурга до Владивостока. Суда, следуя по Балтийскому, Северному и Норвежскому морям, идут по Северному морскому пути, проходя до Владивостока 14280 км. Россия располагает высокоразвитым морским транспортом. Особенно велика его роль во внешнеторговых перевозках.

Значительную ценность представляют биологические ресурсы морей, в первую очередь их рыбные богатства. В омывающих Россию морях обитает почти 900 видов рыб. Из более 250 видов промысловых. Всё более возрастает значение минерально-сырьевых ресурсов морей. Энергию морских приливов можно использовать для получения электроэнергии. В России есть пока лишь одна небольшая приливная электростанция — Кислогубская ПЭС на Баренцевом море.

Моря — это и места отдыха. Конечно, большая часть морей нашей страны имеет слишком суровые природные условия, чтобы там могли отдыхать люди. Но южные моря – Азовское, Чёрное, Каспийское и Японское привлекают большое количество отдыхающих.

Современные способы изучения океанов и морей

Большую роль в изучении океана играют экспедиционные суда, оборудованные специальной аппаратурой, в частности для изучения океанического дна. В Северном Ледовитом океане наблюдения за солёностью и температурой воды, направлением и скоростью течений, глубиной океана учёные ведут с дрейфующих станций.

Изучение глубин Мирового океана осуществляется с помощью разнообразных подводных аппаратов: батискафов, подводных лодок т. д. Наблюдения за океаническими течениями, волнами и дрейфующими льдами ведутся также из космоса. Космическая съёмка, что 1/3 всей покрыта масляной нефтяной плёнкой. Наибольшему загрязнению подвергается Тихий океан, в особенности у берегов Японии и США, где расположены крупные города и промышленные районы.

Признаки загрязнения вод и морских организмов даже у берегов Антарктиды. В крови пингвинов найден ядохимикат, вынесенный с полей через и моря в океан. Там он попал в организм рыб, которыми питаются пингвины. Международные соглашения об охране вод океана призывают разумно использовать богатства океана и охранять его неповторимую природу. В первую очередь это необходимо самому человеку.

Источник

В исследованиях океана появилась причина спешить

Последствия деятельности человека уже можно обнаружить даже в таких местах планеты, куда почти невозможно добраться. А ведь наименее доступные уголки мирового океана интересны, прежде всего, своими первозданными тайнами

Глубоководные районы мирового океана, пожалуй, одни из самых таинственных мест на Земле. За все время существования продвинутых технологических аппаратов у ученых океанологов так и не получилось перейти к регулярному масштабному изучению больших глубин. Несмотря на ежегодные миссии, мировой океан изучен всего на 2-5%. Возможно, 2021 станет поворотным для глубоководных исследований благодаря одному из проектов, американской подводной лаборатории «Элвин», которой на самом деле уже более полувека от роду. А вот российские достижения в этой передовой сфере пока рискуют отойти еще дальше в прошлое.

Белая подводная лодка

В начале марта 2020 года блестящая белая подводная лодка поднялась на поверхность недалеко от побережья Северной Каролины после 7 часов на глубине сотен метров под водой. Пилот подводной лодки и двое ученых-океанологов только что вернулись после сбора образцов вокруг места выхода метана. Это было завершающее погружение подлодки «Элвин» в месячной экспедиции, во время которой команда отправилась из Мексиканского залива на восточное побережье, чтобы исследовать массивный глубоководный коралловый риф.

Для Брюса Стрикротта, главного пилота «Элвина» и руководителя экспедиции, такого рода миссии на дно мира — обычная часть жизни. С тех пор, как он впервые начал работать над «Элвином» в качестве инженера почти 25 лет назад, Стрикротт провел более 2 тысяч часов в океанских глубинах, где научился умело ориентироваться в инопланетном ландшафте морского дна и исследовать образцы с помощью тонких роботизированных рук подводной лодки. «Элвин» совершает десятки погружений на морское дно каждый год, но миссия по утечке метана этой весной стала важной вехой в карьере Стрикротта как исследователя: это было последнее погружение на такую «небольшую» глубину.

После окончания экспедиции «Элвин» прошел серьезную модернизацию в Океанографическом институте Вудс-Холла в Массачусетсе. Когда реконструкция батискафа завершится, легендарное судно будет входить в число самых оснащенных глубоководных аппаратов в мире. Следующей осенью «Элвин» снова выйдет на воду под руководством Стрикротта для погружения в траншеи недалеко от Пуэрто-Рико. Во время этого путешествия он вместе с командой океанографов и наблюдателей ВМС США опустит подводную лодку на 6,5 тысяч метров — гораздо глубже, чем когда-либо прежде.

В декабре 2020 года Стрикротт и небольшая команда из Вудс-Хоула рассказали о ходе модернизации «Элвина» на ежегодном собрании Американского геофизического союза, которое проводилось дистанционно из-за пандемии. Пожалуй, наиболее важным усовершенствованием стали новые титановые балластные сферы и герметичное отделение, которое позволит подводной лодке перевозить до трех человек на глубине более 6 километров под водой. Одно только это обновление увеличит максимальную способность погружения лодки более чем на 1,5 километра и сделает около 99% океана доступным для исследования.

В зону хадаль

Два соединенных рычага для забора проб (с обновлением появится и третий) выходят из передней части сферы экипажа «Элвина» и используются для закачивания в корабль до 226 килограмм океанических материалов и проб. В рамках модернизации судно получит более мощные двигатели, набор сложных систем визуализации и акустическую систему передачи, чтобы его пассажиры могли по беспроводной связи отправлять изображения и метаданные со дна океана на поверхность.

Чтобы модернизировать подводную лодку, инженерам пришлось разобрать ее до металлического каркаса. Это уже привычная процедура для «Элвина», который раз в пять лет разбирается до гаек с болтами, даже если не запланировано никаких серьезных обновлений.

Адам Соул, главный научный сотрудник по глубоким погружениям в Вудс-Хоул, рассказал научно-технологическому интернет-изданию Ars Technica, что именно это скрупулезное внимание к деталям помогло «Элвину» пережить более чем 5 тысяч погружений. «Но, к сожалению, ничто не гарантирует стопроцентную безопасность: случалось и такое, что наше детище было буквально на волосок от гибели», — вспоминал Соул.

Всего через несколько лет после того, как «Элвин» был введен в эксплуатацию, технические сложности на корабле-носителе привели к тому, что подлодка упала в океан и начала тонуть с тремя членами экипажа внутри. Людям чудом удалось спастись, но на то, чтобы вытащить «Элвина» со дна океана, потребовался год.

Подлодка честно служит уже шесть десятилетий, но из-за регулярных разборок и переоборудования у нее не осталось почти ничего общего с первоначальной версией, кроме названия. Если вспомнить античность, то можно провести аналогию с кораблем Тесея, в котором доски корабля вырывались и заменялись одна за другой, пока не осталось ничего от оригинала.

До последней реконструкции «Элвин» имел доступ лишь к двум третям морского дна. Теперь возможности подводного судна и исследователей гораздо больше. После того, как весной инженеры из Вудс-Хоул нанесут последние штрихи, «Элвин» пройдет тщательную проверку и сотни испытаний, чтобы подготовиться к первому погружению на глубину 6,5 тыс. м.

В сентябре следующего года «Элвин» будет доставлен в Пуэрто-Рико, где начнутся первые «мокрые» испытания. Особую угрозу для пассажиров могут создавать вредные газы, возникающие в результате жизнедеятельности подлодки. В течение недели «Элвин» и пассажиры будут погружаться все глубже, добавляя примерно по 500 метров в день. К концу недели подводная лодка достигнет максимальной глубины и коснется морского дна в траншеях у побережья Пуэрто-Рико. Если никаких трудностей не возникнет, военно-морской флот официально разрешит «Элвину» проводить регулярные экспедиции с экипажем в течение следующих пяти лет.

Экспедиция в Пуэрто-Рико будет первой попыткой «Элвина» погрузиться в зону хадаль (или ультрабиссаль): самую глубокую — глубже 6 тыс. м и наименее изученную область океана. Зона эта темная и холодная, с давлением в 1000 раз выше, чем на поверхности. Жизни там почти нет: некоторые виды рыб могут существовать на глубине до 8 тыс. метров, но в самых дальних областях зоны хадаль обитают только беспозвоночные и микроскопические организмы. И эти самые глубокие места океана все же останутся для американского батискафа недоступными.

В целом хадальные траншеи в мире по площади больше, чем Австралия, но ученые только начали изучать, что скрывается на таких глубинах. Зона хадаль находится от 6000 до 11000 метров под поверхностью воды, и только четыре человека в истории добрались до дна.

Самое глубокое место в океане, известное как Марианская впадина, приняло первых посетителей в 1960 году и больше не исследовалась до последнего десятилетия. Тогда сначала режиссер Джеймс Кэмерон в 2012-м, а затем в 2019 году бизнесмен и путешественник Виктор Весково совершили самостоятельные погружения на дно подводной пропасти. «Элвин» станет одним из немногих кораблей с экипажем, способных опуститься на такую глубину. Чтобы добраться до дна Марианской впадины, надо проделать вертикально вниз путь длиной почти 11 км.

Зачем исследовать океан

Сейчас все океанологи гонятся за изучением морского дна, прежде чем оно будет непоправимо повреждено деятельностью человека. Характерно, что если предыдущие исследования упомянутой Марианской впадины (включая траловые, в т. ч. советского судна «Витязь») приносили улов в виде экзотических обитателей дня и образцы грунта, то Виктор Весково поднял оттуда среди прочего пластиковый пакет и обертки от конфет.

Глубокий океан поглощает значительное количество углекислого газа и тепла Земли, но этот процесс плохо исследован. Пока неясно, как рост температуры и вредных выбросов повлияет на него, поэтому сбор данных со дна океана сегодня будет иметь решающее значение для понимания того, что делать в непредвиденных ситуациях в будущем.

«Наши знания об этой глубинной зоне минимальны», — сказал Стрикротт на собрании географического союза. — «Мы можем рассчитывать на открытия новых видов и новых процессов почти каждый раз, когда мы отправляемся на эти только недавно недоступные глубины».

Но морское дно таит больше, чем просто знания. Это кладезь ценных металлов, таких как кобальт и марганец, которые используются в нашей электронике. Вполне возможно, что на морском дне этих металлов даже больше, чем на суше. Компании, занимающиеся глубоководной добычей полезных ископаемых, уже проводят разведочные работы, чтобы подготовиться к добыче этого ценного сырья в крупных масштабах. Но нынешние подходы к глубоководному промыслу невероятно разрушительны, и пагубные последствия этой деятельности для экосистемы до конца не изучены. Под руководством ООН Международный орган по морскому дну все еще разрабатывает нормативную базу, которая должна будет держать глубоководную золотую лихорадку под контролем. Главное, чтобы ученые успели получить достаточно данных до того, как капитализм захватит морское царство.

«В целом я думаю, что очень важно добраться до глубин океана, чтобы узнать больше о биоразнообразии. Невозможно управлять ресурсами и защищать окружающую среду, если вы не знаете, что там находится», — сказал Стрикротт.

Без человека никуда

Наверное, разумно будет задаться вопросом, почему Вудс-Хоул, Национальный научный фонд, ВМС США и их многочисленные сотрудники хотят потратить все время и усилия на то, чтобы привести в порядок 60-летнюю подводную лодку. В наши дни обновление транспортного средства обычно означает его оптимизацию до автопилота. Оказалось, что исследователи глубин океана все время используют автономные и дистанционно управляемые подводные лодки, которые могут изучать океаническое дно за небольшую часть бюджета проекта «Элвин» и без риска для жизни человека. Почему бы не поручить роботам грязную работу по сбору данных, а людям позволить заниматься чистой наукой?

Здесь стоит упомянуть, что в России и СССР был опыт использования глубоководных аппаратов без экипажа — «Мир-1» и «Мир-2». Один из них уже находится в музее, но за 30 с лишним лет оба проекта показали себя успешными: аппараты провели более 35 экспедиций в прошлом веке. Однако сейчас никаких миссий с использованием «Мира-1» и «Мира-2» российские океанографы не проводят. Все упирается в недостаточное финансирование и отсутствие корабля носителя — таковы суровые реалии отечественной науки. Удивительно, но российские батискафы могли погружаться на глубину до 6 км — так же, как «Элвин», названный инновационным. С такими возможностями отечественные глубоководные аппараты могли исследовать все те же 95% морского дна. Почему же мы тогда не знаем все об океане? И как изменит ситуацию американский корабль?

Подводные лодки без экипажа погружались в зону хадаль на протяжении десятилетий, но Антонина Полякова, доцент кафедры океанологии МГУ, говорит, что трудно превзойти человека, когда дело доходит до исследования морского дна: «Во-первых, люди могут видеть больше. Наши глаза — это удивительные сенсоры. Современные подводные камеры — или любые другие, если на то пошло — не могут приблизиться к их разрешению, особенно при слабом освещении глубокого океана. Им все еще далеко до того, на что способен человеческий глаз».

Люди также незаменимы при обнаружении новых объектов. Ученые, путешествующие по морскому дну в «Элвине», лучше оснащены, чтобы распознать то, чего они никогда раньше не видели, и аккуратно взять верный образец для изучения. Это также можно сделать с помощью подлодки с дистанционным управлением, которая соединена с человеком, находящимся на поверхности, с помощью длинной привязи, но удаленным операторам сложнее определить перспективные участки для сбора проб. Трос длиной в несколько миль также может создать проблемы для робота и ограничить его возможности передвижения. Не подвязанным автономным роботам все еще труднее, поскольку у них нет доступа к GPS для навигации и им сложно самостоятельно распознать места с перспективными образцами.

Полякова считает, что использование роботов зачастую мешает открытиям. Они, как правило, намного громче, чем подводные лодки, созданные для людей, и используют гораздо более яркий свет из-за ограниченного разрешения их камер. Это пугает обитателей дна, что затрудняет работу исследователей. «Одна из причин, по которой зона хадаль кажется такой пустынной, заключается в том, что к тому времени, когда эти неуклюжие роботы доберутся до дна, они отпугнут всех морских жителей. Если мы будем незаметнее, то, вероятно, сможем найти вещи, которые все это время упускали», — считает океанограф.

Вот и Стрикротт до сих пор помнит, с каким азартом он работал над «Элвином» в качестве молодого инженера-океанолога, и ему нравится сопровождать начинающих морских ученых в их первом путешествии на дно океана. «Без сомнения, это действительно интересная часть океанографии, в которой люди исследуют те части нашей планеты, которые никогда не видели раньше», — говорит Стрикротт. — «Чтобы наука об океанографии оставалась живой, нужно завлекать больше новых людей в эту сферу. Инновационные возможности изучения глубин как раз достаточно привлекательны».

Установление более тесной связи с океаном действительно имеет важнейшее значение для будущего науки. Самые глубокие его точки по-прежнему могут хранить в себе загадки, которые сейчас трудно себе представить.

Но, конечно, серьезным исследователям с помощью их удивительных аппаратов не придет в голову отправиться в океанские пучины на поиски, допустим, какого-нибудь легендарного кракена с огромными щупальцами.

А что все-таки они будут делать, встретив его там?

Источник

Оцените статью