- Восточная сибирь тихий океан перспективы
- Строительство ВСТО-I
- Развитие ВСТО-I
- Строительство ВСТО-II
- Развитие ВСТО-II
- Нефтепровод «Восточная Сибирь – Тихий океан». Современное состояние и перспективы
- Введение
- Природные условия трассы ВСТО
- Геотехнические особенности и надежность нефтепровода
- Нефтепровод «Восточная Сибирь – Тихий океан». Современное состояние и перспективы
- Введение
- Природные условия трассы ВСТО
- Геотехнические особенности и надежность нефтепровода
Восточная сибирь тихий океан перспективы
Обеспечение транспортировки нефти месторождений Восточной Сибири на НПЗ России и на экспорт в страны АТР через порт Козьмино и в Китайскую Народную Республику.
Строительство ВСТО-I
Строительство магистрального нефтепровода Восточная Сибирь – Тихий океан на участке от головной перекачивающей станции «Тайшет» до перекачивающей станции «Сковородино» пропускной способностью до 30 млн тонн в год и протяженностью линейной части 2 694 км со строительством семи перекачивающих станций. Строительство нефтеналивного порта в бухте Козьмина.
Этап завершен строительством и введен в эксплуатацию в 2009 году.
Развитие ВСТО-I
В рамках поэтапного увеличения пропускной способности ВСТО-I выполнено строительство новых и реконструкция действующих перекачивающих станций.
В 2012 году введены в эксплуатацию пять перекачивающих станций, что позволило увеличить пропускную способность нефтепровода до 50 млн тонн в год.
В 2014 году введены в эксплуатацию три перекачивающие станции, что позволило увеличить пропускную способность нефтепровода до 58 млн тонн в год.
В 2017 году введены в эксплуатацию три перекачивающие станции, что позволило увеличить пропускную способность нефтепровода до 73 млн тонн в год.
В 2019 году введены в эксплуатацию три перекачивающие станции, что позволило увеличить пропускную способность нефтепровода до 80 млн тонн в год.
Магистральный нефтепровод «Восточная Сибирь – Тихий океан» на участке от головной перекачивающей станции «Тайшет» до перекачивающей станции «Сковородино» выведен на максимальную проектную мощность 80 млн тонн в год в 2019 году.
Строительство ВСТО-II
Строительство магистрального нефтепровода Восточная Сибирь – Тихий океан на участке от перекачивающей станции «Сковородино» до спецморнефтепорта (СМНП) «Козьмино» пропускной способностью до 30 млн тонн в год и протяженностью 2 046 км со строительством восьми перекачивающих станций.
Этап завершен строительством и введен в эксплуатацию в 2012 году.
Развитие ВСТО-II
В рамках поэтапного увеличения пропускной способности ВСТО-II выполнено строительство новых и реконструкция действующих перекачивающих станций.
В 2017 году введена в эксплуатацию одна перекачивающая станция, что позволило увеличить пропускную способность нефтепровода до 45 млн тонн в год.
В 2019 году введены в эксплуатацию три перекачивающие станции, что позволило увеличить пропускную способность нефтепровода до 50 млн тонн в год.
Магистральный нефтепровод «Восточная Сибирь – Тихий океан» на участке от перекачивающей станции «Сковородино» до порта «Козьмино» выведен на максимальную проектную мощность 50 млн тонн в год в 2019 году.
Источник
Нефтепровод «Восточная Сибирь – Тихий океан». Современное состояние и перспективы
В статье освещены основные геоэкологические и геотехнические проблемы, связанные со сложной инженерно-геологической обстановкой трассы нефтепровода и уникальностью перехода трубы через одну из крупнейших рек Сибири – Лену, выявленные на стадиях инженерно-геологических изысканий, проектирования и строительства объекта.
К стадии эксплуатации объекта основные проблемы успешно решены, что позволило существенно повысить надежность нефтепровода и уменьшить значительные затраты на проведение геотехнических и компенсационных мероприятий.
Введение
Нефтепровод «Восточная Сибирь – Тихий океан» (ВСТО) – крупнейший в Восточной Сибири объект по транспортировке нефти на российский Дальний Восток и рынки Азиатско-Тихоокеанского региона, созданный в последнее десятилетие. При соединении с существующими магистральными трубопроводами «Транснефти», ВСТО создает единую сеть, обеспечивающую оперативное распределение нефти в западном и восточном направлениях. Линейная часть трассы первой очереди Восточной нефтяной трубы проходит по маршруту Тайшет – Усть-Кут (оба Иркутская область) – Ленск – Алдан (оба Якутия) – Сковородино (Амурская область) с завершением в специальном морском нефтяном порту (СМНП) «Козьмино» (Приморский край).
Основной сырьевой базой нефтетранспортной системы становятся разведанные в последние десятилетия в юго-западной Якутии и на севере Иркутской области, и числящиеся на государственном балансе Чаяндинское, Среднеботуобинское, Таас-Юряхское, Бес-Юряхское, Иреляхское, Мирнинское, Северо-Нилбинское, Хотого-Мурбайское (Якутия), Ковыктинское (Иркутская область) и другие нефтегазоконденсатные (НГКМ) и нефтяные месторождения. Создание магистрального нефтепровода позволяет не только резко активизировать процесс их освоения, но и решить разнообразные вопросы внешнеэкономической деятельности.
Большая протяженность и сложность трассы, отсутствие геотехнической инфраструктуры на многих участках, неустойчивые в инженерно-геологическом отношении породы, разнообразные поверхностные геосистемы, широкое развитие различных типов многолетнемерзлых пород (ММП), сейсмичность, большое количество водных препятствий, низкие температуры воздуха зимой – все это в значительной степени усложнило проектирование и особенно сооружение объекта и потребовало применения особых технических решений. Вместе с сооружением линейной части ВСТО на всем протяжении трассы велись работы по созданию систем энергообеспечения, транспортировки, переработки, хранения, средств связи и автоматики.
Длина всей российской части транспортной системы составила почти 5 тысяч километров, а на мировом рынке помимо давно известных марок нефти «Брент» и «Юралс» появилась новая – «ВСТО».
В период проектирования и строительства трубопровода мнения о целесообразности и способах его создания были совершенно неоднозначны. В среде общественности и специалистов существовали как сторонники, так и противники реализации проекта со своими соображениями и аргументами [1, 2]. Основные опасения были связаны с особенностями природной среды в полосе влияния объекта, отличающейся сложностью и неустойчивостью. При реализации проекта особое внимание уделялось вопросам геоэкологии, т.е. снижению негативного воздействия объекта на окружающую среду.
Природные условия трассы ВСТО
Территории, на которые распространяется влияние трубопровода, в естественном состоянии отличаются сложными природными условиями [3, 4, 5]. В первую очередь это широкое развитие горных пород со среднегодовой температурой, близкой к 0°С, и возможностью их перехода из мерзлого в талое состояние и обратно. Глубина сезонного оттаивания ММП изменяется в пределах 0,5 – 3,5 м. Эти значения очень важны для оценки последствий освоения территории на различных стадиях строительства и эксплуатации нефтепровода. ММП имеют преимущественно массивно-островное и островное по площади и сплошное по вертикали распространение [3, 4]. Многолетнемерзлые толщи представлены метаморфическими, магматическими и осадочными коренными породами. Рыхлые сингенетические и реже эпигенетические многолетнемерзлые толщи супесчано-суглинистых и торфянистых поверхностных образований распространены ограниченно [5]. Мощность ММП колеблется от нескольких до 400 м и более метров, а среднегодовые температуры на подошве слоя их сезонных колебаний (10 – 12 м) изменяются в среднем от 0 до -4 – -6°С. Среднегодовая температура талых пород на подошве слоя годовых теплооборотов большей частью не превышает +2°С. Относительно мягкие мерзлотные условия свойственны районам выровненного плоскогорного рельефа [3, 4]. Плоские и полого-выпуклые водораздельные поверхности Приалданского плато, слабо расчлененные и невысокие (абс. отм. не более 800 – 900 м) районы Алданского плоскогорья и Чульманского плато характеризуются широким развитием снежно-радиационных и инфильтрационных таликов со среднегодовыми температурами пород под ними от 3,0 до -1,0°С и мощностями мерзлых толщ до 50 м. В целом для водораздельных поверхностей районов плоскогорного рельефа и плато характерно островное развитие ММП.
Наиболее суровыми мерзлотными условиями по трассе отличаются приподнятые выше 1500 м районы интенсивных мезокайнозойских поднятий. Талики в долинах местных водотоков встречаются, в основном, в пределах пойм и II надпойменной террасы, в то время как I надпойменная терраса, как правило, сложена ММП. Крупные талики широко распространены под руслами рек, имеющих постоянный поверхностный или подземный сток, а также в местах выхода постоянно действующих источников. Это свидетельствует о большом развитии под руслами рек сквозных таликов, приуроченных в основном к участкам тектонических нарушений.
Особую опасность представляют участки разнообразных экзогенных процессов, отчетливо активизирующихся при техногенном воздействии на поверхность. Наиболее сложными являются площади развития каменных развалов – курумов (рис. 1), бугров пучения, подземных льдов (рис. 2), эрозионных процессов (рис. 3), а также участки развития марей, где строители на начальных стадиях освоении встретились со значительными трудностями технологического характера. Именно подобные участки трассы в начале создания объекта являлись наиболее сложными как в техническом, так и в геоэкологическом планах на всех стадиях строительства и эксплуатации объекта. В их пределах возможны «заплывания трубы» при её погружении в перенасыщенные талыми водами грунты (рис. 4). Более детально инженерно-геологические условия трассы ВСТО освещены в специальных работах [3, 4]. Участки существенно отличаются по особенностям прокладки трубы, которые на участках с близким к поверхности залеганием пород коренной основы более благоприятны.
Геотехнические особенности и надежность нефтепровода
Одним из неочевидных, но совершенно верным в плане уменьшения негативных последствий освоения было решение создателей нефтепровода прокладывать его подземным способом, предложенным и обоснованным в Институте мерзлотоведения им. П.И. Мельникова еще в прошлом веке, и подтвердившем свою надежность на ряде объектов Якутии и Восточной Сибири в целом [1].
Источник
Нефтепровод «Восточная Сибирь – Тихий океан». Современное состояние и перспективы
В статье освещены основные геоэкологические и геотехнические проблемы, связанные со сложной инженерно-геологической обстановкой трассы нефтепровода и уникальностью перехода трубы через одну из крупнейших рек Сибири – Лену, выявленные на стадиях инженерно-геологических изысканий, проектирования и строительства объекта.
К стадии эксплуатации объекта основные проблемы успешно решены, что позволило существенно повысить надежность нефтепровода и уменьшить значительные затраты на проведение геотехнических и компенсационных мероприятий.
Введение
Нефтепровод «Восточная Сибирь – Тихий океан» (ВСТО) – крупнейший в Восточной Сибири объект по транспортировке нефти на российский Дальний Восток и рынки Азиатско-Тихоокеанского региона, созданный в последнее десятилетие. При соединении с существующими магистральными трубопроводами «Транснефти», ВСТО создает единую сеть, обеспечивающую оперативное распределение нефти в западном и восточном направлениях. Линейная часть трассы первой очереди Восточной нефтяной трубы проходит по маршруту Тайшет – Усть-Кут (оба Иркутская область) – Ленск – Алдан (оба Якутия) – Сковородино (Амурская область) с завершением в специальном морском нефтяном порту (СМНП) «Козьмино» (Приморский край).
Основной сырьевой базой нефтетранспортной системы становятся разведанные в последние десятилетия в юго-западной Якутии и на севере Иркутской области, и числящиеся на государственном балансе Чаяндинское, Среднеботуобинское, Таас-Юряхское, Бес-Юряхское, Иреляхское, Мирнинское, Северо-Нилбинское, Хотого-Мурбайское (Якутия), Ковыктинское (Иркутская область) и другие нефтегазоконденсатные (НГКМ) и нефтяные месторождения. Создание магистрального нефтепровода позволяет не только резко активизировать процесс их освоения, но и решить разнообразные вопросы внешнеэкономической деятельности.
Большая протяженность и сложность трассы, отсутствие геотехнической инфраструктуры на многих участках, неустойчивые в инженерно-геологическом отношении породы, разнообразные поверхностные геосистемы, широкое развитие различных типов многолетнемерзлых пород (ММП), сейсмичность, большое количество водных препятствий, низкие температуры воздуха зимой – все это в значительной степени усложнило проектирование и особенно сооружение объекта и потребовало применения особых технических решений. Вместе с сооружением линейной части ВСТО на всем протяжении трассы велись работы по созданию систем энергообеспечения, транспортировки, переработки, хранения, средств связи и автоматики.
Длина всей российской части транспортной системы составила почти 5 тысяч километров, а на мировом рынке помимо давно известных марок нефти «Брент» и «Юралс» появилась новая – «ВСТО».
В период проектирования и строительства трубопровода мнения о целесообразности и способах его создания были совершенно неоднозначны. В среде общественности и специалистов существовали как сторонники, так и противники реализации проекта со своими соображениями и аргументами [1, 2]. Основные опасения были связаны с особенностями природной среды в полосе влияния объекта, отличающейся сложностью и неустойчивостью. При реализации проекта особое внимание уделялось вопросам геоэкологии, т.е. снижению негативного воздействия объекта на окружающую среду.
Природные условия трассы ВСТО
Территории, на которые распространяется влияние трубопровода, в естественном состоянии отличаются сложными природными условиями [3, 4, 5]. В первую очередь это широкое развитие горных пород со среднегодовой температурой, близкой к 0°С, и возможностью их перехода из мерзлого в талое состояние и обратно. Глубина сезонного оттаивания ММП изменяется в пределах 0,5 – 3,5 м. Эти значения очень важны для оценки последствий освоения территории на различных стадиях строительства и эксплуатации нефтепровода. ММП имеют преимущественно массивно-островное и островное по площади и сплошное по вертикали распространение [3, 4]. Многолетнемерзлые толщи представлены метаморфическими, магматическими и осадочными коренными породами. Рыхлые сингенетические и реже эпигенетические многолетнемерзлые толщи супесчано-суглинистых и торфянистых поверхностных образований распространены ограниченно [5]. Мощность ММП колеблется от нескольких до 400 м и более метров, а среднегодовые температуры на подошве слоя их сезонных колебаний (10 – 12 м) изменяются в среднем от 0 до -4 – -6°С. Среднегодовая температура талых пород на подошве слоя годовых теплооборотов большей частью не превышает +2°С. Относительно мягкие мерзлотные условия свойственны районам выровненного плоскогорного рельефа [3, 4]. Плоские и полого-выпуклые водораздельные поверхности Приалданского плато, слабо расчлененные и невысокие (абс. отм. не более 800 – 900 м) районы Алданского плоскогорья и Чульманского плато характеризуются широким развитием снежно-радиационных и инфильтрационных таликов со среднегодовыми температурами пород под ними от 3,0 до -1,0°С и мощностями мерзлых толщ до 50 м. В целом для водораздельных поверхностей районов плоскогорного рельефа и плато характерно островное развитие ММП.
Наиболее суровыми мерзлотными условиями по трассе отличаются приподнятые выше 1500 м районы интенсивных мезокайнозойских поднятий. Талики в долинах местных водотоков встречаются, в основном, в пределах пойм и II надпойменной террасы, в то время как I надпойменная терраса, как правило, сложена ММП. Крупные талики широко распространены под руслами рек, имеющих постоянный поверхностный или подземный сток, а также в местах выхода постоянно действующих источников. Это свидетельствует о большом развитии под руслами рек сквозных таликов, приуроченных в основном к участкам тектонических нарушений.
Особую опасность представляют участки разнообразных экзогенных процессов, отчетливо активизирующихся при техногенном воздействии на поверхность. Наиболее сложными являются площади развития каменных развалов – курумов (рис. 1), бугров пучения, подземных льдов (рис. 2), эрозионных процессов (рис. 3), а также участки развития марей, где строители на начальных стадиях освоении встретились со значительными трудностями технологического характера. Именно подобные участки трассы в начале создания объекта являлись наиболее сложными как в техническом, так и в геоэкологическом планах на всех стадиях строительства и эксплуатации объекта. В их пределах возможны «заплывания трубы» при её погружении в перенасыщенные талыми водами грунты (рис. 4). Более детально инженерно-геологические условия трассы ВСТО освещены в специальных работах [3, 4]. Участки существенно отличаются по особенностям прокладки трубы, которые на участках с близким к поверхности залеганием пород коренной основы более благоприятны.
Геотехнические особенности и надежность нефтепровода
Одним из неочевидных, но совершенно верным в плане уменьшения негативных последствий освоения было решение создателей нефтепровода прокладывать его подземным способом, предложенным и обоснованным в Институте мерзлотоведения им. П.И. Мельникова еще в прошлом веке, и подтвердившем свою надежность на ряде объектов Якутии и Восточной Сибири в целом [1].
Источник