Зависимость температуры от высоты над уровнем моря формула
В данном разделе мы выведем зависимость давления газа \(P\) от высоты \(h\) над уровнем моря в гравитационном поле Земли.
Возьмем произвольную цилиндрическую колонну газа с площадью сечения \(S\) и высотой \(h.\) Вес выделенного объема газа будет равен \[F = mg = \rho gV = \rho ghS,\] где \(\rho\) означает плотность газа. Плотность газа будет выражаться следующей формулой: \[\require = \frac<<\rho gh\cancel>><\cancel> = \rho gh. \] Теперь представим такую колонну в атмосфере и выделим в ней тонкий слой воздуха высотой \(dh\) (рисунок \(1\)). Ясно, что такой слой вызывает изменение давления на величину \[dP = — \rho gdh.\] Мы поставили здесь знак минус, поскольку давление должно уменьшаться с увеличением высоты.
Рассматривая атмосферный воздух как идеальный газ, воспользуемся уравнением Менделеева-Клапейрона, чтобы выразить плотность \(\rho\) через давление \(P:\) \[
Таким образом, зависимость атмосферного давления от высоты выражается формулой: \[P = ><<8.3143 \cdot 288.15>>h> \right) > = <101.325\exp \left( < - 0.00012\,h>\right)\;\left[\text <кПа>\right],> \] где высота \(h\) над уровнем моря выражается в метрах. Если давление определяется в миллиметрах ртутного столба \(\left( \text <мм.рт.ст.>\right),\) то барометрическая формула принимает вид: \[P\left( h \right) = 760\exp \left( < - 0.00012\,h>\right)\;\left[ \text <мм.рт.ст.>\right].\] Барометрическая формула широко используется для оценки атмосферного давления при различных условиях, хотя она дает слегка завышенные значения. Давление воздуха в шахте можно оценить, используя общую барометрическую формулу : \[P = После несложных вычислений находим: \[ \exp \left( < - \frac< Источник Определение температуры воздуха в зависимости от высоты Известно, что на высоте 750 метров над уровнем моря температура составляет +22 о С. Определите температуру воздуха на высоте: а) 3500 метров над уровнем моря б) 250 метров над уровнем моря Нам известно, что при изменении высоты на 1000 метров (1 км) температура воздуха изменяется на 6 о С. Причём, при увеличении высоты температура воздуха понижается, а при уменьшении — повышается. а) 1. Определим разницу высот: 3500 м -750 м = 2750 м = 2,75 км 2. Определим разницу температур воздуха: 2,75 км × 6 о С = 16,5 о С 3. Определим температуру воздуха на высоте 3500 м: 22 о С — 16,5 о С = 5,5 о С Ответ: на высоте 3500 м температура воздуха составляет 5,5 о С. б) 1. Определим разницу высот: 750 м -250 м = 500 м = 0,5 км 2. Определим разницу температур воздуха: 0,5 км × 6 о С = 3 о С 3. Определим температуру воздуха на высоте 250 м: 22 о С + 3 о С = 25 о С Ответ: на высоте 250 м температура воздуха составляет 25 о С. 2. Определение атмосферного давления в зависимости от высоты Известно, что на высоте 2205 метров над уровнем моря атмосферное давление составляет 550 мм ртутного столба. Определите атмосферное давление на высоте: а) 3255 метров над уровнем моря б) 0 метров над уровнем моря Нам известно, что при изменении высоты на 10,5 метров атмосферное давление изменяется на 1 мм рт. ст. Причём, при увеличении высоты атмосферное давление понижается, а при уменьшении — повышается. а) 1. Определим разницу высот: 3255 м — 2205 м = 1050 м 2. Определим разницу атмосферного давления: 1050 м : 10,5 м = 100 мм рт.ст. 3. Определим атмосферное давление на высоте 3255 м: 550 мм рт.ст. — 100 мм рт.ст. = 450 мм рт.ст. Ответ: на высоте 3255 м атмосферное давление составляет 450 мм ртутного столба.. б) 1. Определим разницу высот: 2205 м — 0 м = 2205 м 2. Определим разницу атмосферного давления: 2205 м : 10,5 м = 210 мм рт. ст. 3. Определим атмосферное давление на высоте 0 м: 550 мм рт.ст. + 210 мм рт. ст. = 760 мм рт. ст. Ответ: на высоте 0 м атмосферное давление составляет 760 мм ртутного столба. Источник Эта тема должна была появится на сайте одной из первых. Ведь самолеты и вертолеты – атмосферные летательные аппараты. Атмосфера Земли – их, так сказать, среда обитания :-). А физические свойства воздуха как раз и определяют качество этого обитания :-). То есть это одна из основ. И об основе всегда пишут вначале. Но сообразил я об этом только сейчас. Однако лучше, как известно, поздно, чем никогда… Коснемся этого вопроса, в дебри и ненужные сложности однако не залезая :-). Итак… Атмосфера Земли. Это газовая оболочка нашей голубой планеты. Такое название всем известно. А почему голубая? Просто потому, что «голубая» ( а также синяя и фиолетовая ) составляющая солнечного света (спектра) наиболее хорошо рассеивается в атмосфере, окрашивая ее тем самым в голубовато-синеватые, иногда с оттенком фиолетового тона (в солнечный день, конечно :-)). Состав атмосферы Земли. Состав атмосферы достаточно широк. Перечислять в тексте все составляющие не буду, для этого есть хорошая иллюстрация.Состав всех этих газов практически постоянен, за исключением углекислого газа ( СО2 ). Кроме того в атмосфере обязательно содержится вода в виде паров, взвеси капель или кристаллов льда. Количество воды непостоянно и зависит от температуры и, в меньшей степени, от давления воздуха. Кроме того атмосфера Земли (особенно нынешняя) содержит и определенное количество я бы сказал «всякой гадости» :-). Это SO 2 , NH 3 , CO , HCl , NO , кроме того есть там пары ртути Hg . Правда все это находится там в небольших количествах, слава богу :-). Атмосферу Земли принято делить на несколько следующих друг за другом по высоте над поверхностью зон. Первая, самая близкая к земле — это тропосфера . Это самый нижний и, так сказать, основной слой для жизнедеятельности разного вида. В нем содержится 80% массы всего атмосферного воздуха (хотя по объему она составляет всего около 1% всей атмосферы) и около 90% всей атмосферной воды. Основная масса всех ветров, облаков, дождей и снегов 🙂 — оттуда. Тропосфера простирается до высот порядка 18 км в тропических широтах и до 10 км в полярных. Температура воздуха в ней падает с подъемом на высоту примерно 0,65º на каждые 100 м. Зона вторая – стратосфера . Надо сказать, что между тропосферой и стратосферой выделяют еще одну узкую зону – тропопаузу . В ней прекращается падение температуры с высотой. Тропопауза имеет среднюю толщину 1,5- 2 км, но границы ее нечетки и тропосфера часто перекрывает стратосферу. Так вот стратосфера имеет высоту в среднем от 12 км до 50 км. Температура в ней до 25 км остается неизменной (порядка -57ºС), затем где-то до 40 км повышается примерно до 0ºС и далее до 50 км остается неизменной. Стратосфера – относительно спокойная часть атмосферы земли. Неблагоприятные погодные условия в ней практически отсутствуют. Именно в стратосфере располагается знаменитый озоновый слой на высотах от 15-20 км до 55-60 км. Далее следует небольшой пограничный слой стратопауза , температура в которой сохраняется около 0ºС, и затем следующая зона мезосфера. Она простирается до высот 80-90 км, и в ней температура падает примерно до 80ºС. В мезосфере обычно становятся видны мелкие метеоры, которые начинают в ней светиться и там же сгорают. Следующий узкий промежуток – мезопауза и за ней зона термосфера . Ее высота – до 700-800 км. Здесь температура опять начинает повышаться и на высотах порядка 300 км может достигать величин порядка 1200ºС. Далее она остается постоянной. Внутри термосферы до высоты около 400 км расположена ионосфера. Здесь воздух сильно ионизирован из-за воздействия солнечной радиации и обладает большой электропроводностью. Следующая и, вобщем-то, последняя зона – экзосфера . Это так называемая зона рассеяния . Здесь в основном присутствует очень сильно разреженный водород и гелий (с преобладанием водорода). На высотах порядка 3000 км экзосфера переходит в ближнекосмический вакуум. Вот примерно где-то так. Почему примерно? Потому что слои эти достаточно условны. Возможны различные изменения высоты, состава газов, воды, величины температуры, ионизации и так далее. Кроме того существует еще немало терминов, определяющих строение и состояние атмосферы земли. Например гомосфера и гетеросфера . В первой атмосферные газы хорошо перемешаны, и их состав достаточно однороден. Вторая расположена выше первой и такого перемешивания там уже практически нет. Газы в ней разделяет гравитация. Граница между этими слоями расположена на высоте 120 км, и называется она турбопауза . С терминами пожалуй покончим, но обязательно еще добавлю, что условно принято считать, что граница атмосферы расположена на высоте 100 км над уровнем моря. Эта граница называется Линия Кармана . Добавлю еще две картинки для иллюстрации строения атмосферы. Первая, правда, на немецком, но зато полная и достаточно легка в понимании :-). Ее можно увеличить и хорошо рассмотреть. Вторая показывает изменение температуры атмосферы с высотой. Строение атмосферы Земли. Изменение температуры воздуха с высотой. Современные пилотируемые орбитальные космические аппараты летают на высотах около 300-400 км . Однако это уже не авиация, хотя область, конечно, в определенном смысле близкородственная, и мы о ней еще непременно поговорим :-). Зона авиации – это тропосфера. Современные атмосферные летательные аппараты могут летать и в нижних слоях стратосферы. Например практический потолок МИГ-25РБ – 23000 м . Полет в стратосфере. И именно физические свойства воздуха тропосферы определяют каким будет полет, насколько будет эффективна система управления самолета, как будет влиять на него турбулентность в атмосфере, как будут работать двигатели. Первое основное свойство – это температура воздуха . В газодинамике она может определяться по шкале Цельсия либо по шкале Кельвина . Температура t1 на заданной высоте Н по шкале Цельсия определяется: t1 = t — 6,5Н , где t – температура воздуха у земли. Температура по шкале Кельвина называется абсолютной температурой , ноль по этой шкале – это абсолютный ноль. При абсолютном нуле прекращается тепловое движение молекул. Абсолютный ноль по шкале Кельвина соответствует -273º по шкале Цельсия. Соответственно температура Т на высоте Н по шкале Кельвина определяется: T = 273K + t — 6,5H Давление воздуха . Атмосферное давление измеряется в Паскалях (Н/м 2 ), в старой системе измерения в атмосферах (атм.). Существует еще такое понятие как барометрическое давление. Это давление, измеренное в миллиметрах ртутного столба при помощи ртутного барометра. Барометрическое давление (давление на уровне моря) равное 760 мм рт. ст. называется стандартным. В физике 1 атм. как раз и равна 760 мм рт.ст. Плотность воздуха . В аэродинамике чаще всего пользуются таким понятием, как массовая плотность воздуха. Это масса воздуха в 1 м 3 объема. Плотность воздуха с высотой меняется, воздух становится более разреженным. Влажность воздуха . Показывает количество воды, находящееся в воздухе. Существует понятие « относительная влажность ». Это отношение массы водяного пара к максимально возможной при данной температуре. Понятие 0%, то есть когда воздух совершенно сухой может существовать вобщем-то только в лаборатории. С другой стороны 100%-ная влажность вполне реальна. Это означает, что воздух впитал в себя всю воду, которую мог впитать. Что-то типа абсолютно «полной губки». Высокая относительная влажность снижает плотность воздуха, а малая, соответственно повышает. В связи с тем, что полеты самолетов происходят при разных атмосферных условиях, то и их полетные и аэродинамические параметры на одном режиме полета могут быть различными. Поэтому для правильной оценки этих параметров введена Международная стандартная атмосфера (МСА) . Она показывает изменение состояния воздуха с подъемом на высоту. За основные приняты параметры состояния воздуха при нулевой влажности: давление P = 760 мм рт. ст. (101,3 кПА); температура t = +15°C (288 К); массовая плотность ρ = 1,225 kg/m 3 ; Для МСА принято (как уже было сказано выше :-)), что температура падает в тропосфере на 0,65º на каждые 100 метров высоты. Стандартная атмосфера (пример до 10000 м). Таблицы МСА используются при градуировании пилотажно-навигационных приборов, а также для штурманских и инженерных расчетов. Физические свойства воздуха включают в себя также такие понятия как инертность, вязкость и сжимаемость. Инертность — свойство воздуха, характеризующее его способность сопротивляться изменению состояния покоя или равномерного прямолинейного движения. Мерой инертности является массовая плотность воздуха. Чем она выше, тем выше инертность и сила сопротивления среды при движении в ней самолета. Вязкость . Определяет сопротивление трения об воздух при движении самолета. Сжимаемость определяет изменение плотности воздуха при изменении давления. На малых скоростях движения летательного аппарата (до 450 км/ч) изменения давления при обтекании его воздушным потоком не происходит, но при больших скоростях начинает проявляться эффект сжимаемости. Особенно сказывается его влияние на сверхзвуке. Это отдельная область аэродинамики и тема для отдельной статьи :-). Ну вот кажется пока все… Пора закончить это слегка нудноватое перечисление, без которого однако не обойтись :-). Атмосфера Земли, ее параметры, физические свойства воздуха также важны для летательного аппарата, как и параметры самого аппарата, и о них нельзя было не упомянуть. Пока, до следующих встреч и более интересных тем 🙂 … P.S. На сладкое предлагаю посмотреть ролик снятый из кабины спарки МИГ-25ПУ при его полете в стратосферу. Снимал, видимо, турист, у которого есть деньги для таких полетов :-). Снято в основном все через лобовое стекло. Обратите внимание на цвет неба…Определение температуры воздуха в зависимости от высоты
Атмосфера земли и физические свойства воздуха.
Привет, друзья!
Источник